Skip to main content

Preamble

Welcome to Pico! You'll find articles here that explain computer systems by reviewing research papers.

I focus on key areas like datastores, big data, operating systems, and distributed systems – these are the important parts of modern computing. These articles are based on notes I took while reading over 100 research papers. I believe that the best way to deeply understand system design is by studying these foundational papers. I wanted to create something more detailed and insightful than an AI summary.

If you're new to this, I recommend reading the articles in the order I've listed. This order helps you build your understanding step by step, from simpler to more complex ideas. It's helpful to have some basic computer systems knowledge, like what you learned in college. A quick review of those concepts might be useful before you start.

The ideas in these papers are connected. You'll find that ideas from different papers often relate to each other, so you might need to go back and forth between articles to fully understand them. You might not understand every detail the first time, but by reading all the articles, you'll gain a solid understanding of the concepts. It's normal to reread articles as you learn. By the end, you'll have a strong, connected understanding of all the ideas.

Popular posts from this blog

Paper Insights #18 - Practical Uses of Synchronized Clocks in Distributed Systems

This influential paper was authored by Barbara Liskov , a renowned computer scientist who pioneered the field of distributed systems. Paper Link The paper provides a valuable overview of several groundbreaking systems: At-most-once delivery (SCMP) : This system ensures that a message is delivered at most once, preventing duplicate messages. Authenticator Systems (Kerebos) : This system focuses on secure authentication and authorization within distributed environments. Cache consistency (Echo) : This system addresses the challenges of maintaining data consistency across distributed caches. Distributed Databases (Thor) : This system explores the design and implementation of distributed databases. Replicated File System (Harp) : This system investigates the principles of replicating files across multiple servers for improved availability and performance. While many of these concepts may seem outdated in the context of modern computing, studying them provides crucial insights in...

Paper Insights #1 - Moving Beyond End-to-End Path Information to Optimize CDN Performance

This highly influential paper on Content Delivery Networks (CDNs) was authored by Rupa Krishnan   et. al, including Sushant Jain, who was listed fourth among the authors. Sushant was a valued colleague of mine at Google Ads Infrastructure, where he served as Senior Engineering Director for many years. Paper Link Before delving into the paper's concepts, which are generally straightforward to grasp, let's explore some relevant background information. OASIS (2006) OASIS , developed by M. Freedman , K. Lakshminarayanan, and my former Distributed Systems (CS244b) professor at Stanford, D. Mazieres , elegantly addresses the critical challenge for Internet: locating the service replica with the lowest latency for a given client. Prior to OASIS Clients naively pinged every service replica to determine the fastest one based on round-trip time (RTT). While highly accurate, this approach suffered from excessive probing and computationally expensive comparisons. OASIS Architecture OASIS i...

Paper Insights #16 - Cassandra - A Decentralized Structured Storage System

This research paper, authored by Avinash Lakshman (co-inventor of Amazon Dynamo) and Prashant Malik , originates from Facebook and dates back to 2008. Paper Link Cassandra, in its design, appears to be a synthesis of Amazon's Dynamo (2007) and Google's Bigtable (2006). It draws heavily upon the concepts of both systems. Notably, this paper was published during the rise of these influential databases. However, Cassandra also introduces novel ideas that warrant further investigation. Recommended Read: Dynamo: Amazon's Highly Available Key-value Store Let's begin with some of fundamental concepts. SQL Databases SQL databases are a category of databases which are inherently consistency. This implies that data integrity is always upheld. For instance, in a banking database, the cumulative balance across all accounts must remain unchanged at any time regardless of the number of transfer transactions. To ensure this data consistency (the C in ACID), SQL databases necessita...

Paper Insights #13 - Delta Lake: High Performance ACID Table Storage over Cloud Object Stores

At the 2020 VLDB conference, a notable paper was presented by  Michael Armbrust  (Databricks), with co-authors including CEO  Ali Ghodsi  and  Matei Zaharia . Paper Link Before we delve into the paper's details, I would like to introduce some topics to readers. Cloud Data Store The paper effectively describes the design of a cloud data store. Due to its key-value nature and simple API, it has seen wider adoption than a fully-fledged distributed file system. Popular examples of cloud data stores include  Google Cloud Storage ,  Amazon S3 , and  Azure Blob Storage . Design Points Key-Value Store with Eventual Consistency : Functions as a key-value store with eventual consistency. Keys resemble file paths (strings) while values can be byte arrays ranging from a few kilobytes to terabytes. Data Immutability : In most cloud stores, data is immutable. Appends are possible but generally not optimal. Unlike a file system where appends result in addin...

Paper Insights #19 - Kafka: A Distributed Messaging System for Log Processing

This paper was authored by Jay Kreps, Neha Narkhede , and Jun Rao. This seminal paper, presented at the NetDB '11 workshop, laid the foundation for Apache Kafka , a highly influential open-source project in the realm of distributed systems. Paper Link While the paper initially focused on a specific use case – log processing – Kafka has since evolved into a versatile and robust platform for general message delivery. Both Jay Kreps and Neha Narkhede went on to co-found Confluent Inc. , a company commercializing Kafka. Although workshop papers typically carry less weight than conference papers, this particular work garnered significant attention and has had a profound impact on the field. The paper's relatively weak evaluation section may have contributed to its non-selection for the main conference track. However, this in no way diminishes its significance and the lasting influence of Apache Kafka. Messaging Systems Messaging systems facilitate the exchange of messages between di...

Paper Insights #5 - The Design and Implementation of a Log-Structured File System

This paper, authored by M. Rosenblum (co-founder of VMware) and J. Ousterhout, explores Log-Structured File Systems (LFS). While LFS was previously considered obsolete, the rise of Solid State Drives (SSDs) has rekindled interest in its core principles, particularly the concept of immutability. Paper Link Modern file systems, such as RAID 5, incorporate principles from log-structured file systems. HP's commercial AutoRAID product, for example, is based on RAID 5. Let's begin with some basic concepts. File A file is an ordered collection of bytes. Files can reside in various locations, such as on disk, in memory, or across a network. This article focuses on disk-based files. While Von Neumann architecture efficiently utilizes processors and memory, the need for files arose from the desire for persistence. Files provide a mechanism to save the results of a program so they can be retrieved and used later, essentially preserving data across sessions. Essentially File is also ...

Paper Insights #15 - Dynamo: Amazon's Highly Available Key-value Store

This groundbreaking paper, presented at SOSP 2007, has become a cornerstone in the field of computer systems, profoundly influencing subsequent research and development. It served as a blueprint for numerous NoSQL databases, including prominent examples like MongoDB ,  Cassandra , and Azure Cosmos DB . Paper Link A deep dive into this work is essential for anyone interested in distributed systems. It explores several innovative concepts that will captivate and enlighten readers. Let's visit some fundamental ideas (with a caution that there are several of them!). Distributed Hash Tables (DHTs) A DHT is a decentralized system that provides a lookup service akin to a traditional hash table. Key characteristics of DHTs include: Autonomy and Decentralization: Nodes operate independently, forming the system without centralized control. Fault Tolerance: The system remains reliable even when nodes join, leave, or fail. Scalability: It efficiently handles systems with thousands or mil...

Paper Insights #22 - A New Presumed Commit Optimization for Two Phase Commit

Lampson and Lomet 's 1993 paper, from the now-defunct DEC Cambridge Research Lab, remains a classic. Paper Link The paper's concept are hard to grasp. My notes below are elaborated, yet, it may require multiple readings to fully comprehend the reasonings. Let's begin by reviewing fundamental concepts of SQL databases. Serializability Transaction serializability guarantees that, while transactions may execute concurrently for performance reasons, the final outcome is effectively equivalent to some sequential execution of those same transactions. The "effectively" part means that the system ensures a consistent, serializable result even if the underlying execution is parallelized. Strict serializability builds upon serializability by adding a temporal dimension. It mandates that once a transaction commits, its effects are immediately visible to all clients (a.k.a. external consistency ). This differs from linearizability, which focuses on single-object operati...

Paper Insights #24 - Spanner: Google's Globally-Distributed Database

This landmark paper, presented at ODSI '12, has become one of Google's most significant contributions to distributed computing. It didn't solve the long-standing core problem of scalability of 2PC in distributed systems, rather, it introduced  TrueTime  that revolutionized system assumptions. Authored by J.C. Corbett , with contributions from pioneers like Jeff Dean and Sanjay Ghemawat , this paper effectively ended my exploration of distributed SQL databases. It represents the leading edge of the field. Paper Link I would highly recommend reading the following before jumping into this article: 1.  Practical Uses of Synchronized Clocks in Distributed Systems where I introduced why clock synchronization is necessary but not sufficient for external consistency. 2.  A New Presumed Commit Optimization for Two Phase Commit where I introduced two-phase commits (2PC) and how it is solved in a distributed system. 3.  Amazon Aurora: Design Considerations for High Th...